Transpose of a Matrix
Let A be a matrix. Then a new matrix
obtained by interchanging the corresponding rows and columns of A is called the
transpose of A. It is denoted by A’
or At.
********************
10 Math Problems officially announces the release of Quick Math Solver and 10 Math Problems, Apps on Google Play Store for students around the world.
********************
********************
![Transpose of a matrix A If A = (■(a_11&a_12&a_13@a_21&a_22&a_23 )), then At = (■(a_11&a_21@a_12&a_22@a_13&a_23 )).](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjNXvrfiHuxCEFGOrb4KIOtwssBvMrNYV1Ag3xx5lSgQZ4O8ze35nqtyNBMP1HPFA53pLbYEFmcWH_svdjAs5-Lz_TJkCBvyN9WcERKQq2a5VRkMXGDoGueuh-KR39imZ2lZVbEsEVQk8Ho/s16000/transpose+of+a+matrix+A.png)
Here, the order of matrix A is 2 × 3 and that of At is 3 × 2. Hence if the order of a matrix A is m × n, then the order of transpose of matrix A i.e. At will be n × m. If A is a square matrix of order n, then its transpose At is also a square matrix of order n. If A is a row matrix, then its transpose At is a column matrix.
For example:
![Examples of transpose of matrices i. If A = (■(2&4&6@3&6&9)), then At = (■(2&3@4&6@6&9)) ii. If A = (■(1&2@3&4)), then At = (■(1&3@2&4)) iii. If A = (■(1&2&3)), then At = (■(1@2@3))](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhtWE90ATLU0e-7F0n0PQsVszkZO0u5UeC6H1gaHipEfgE8M2Na4_9NrS87eXSULZHGDjKxsTw2MolKCNtoP86gs_jpvn0KoezHkPTnKK_jO4KYgd5v5G2H3KNZVS2ZHBgk8teeI0pgy7LY/s16000/examples+of+transpose+of+matrices.png)
Properties of Transpose of a Matrix
1. The transpose of the
transpose of a matrix is the matrix itself, i.e. (At)t =
A.
![Properties of transpose - 1. (A')' = A Let A = (■(2&4&6@1&0&3)) …………………..(i) Then, At = (■(2&1@4&0@6&3)) And, (At)t = (■(2&4&6@1&0&3)) ……….…..(ii) From (i) and (ii), we get (At)t = A.](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEge2i1fLRobTQbcPCVYVYUIXqqX6MqFhyphenhyphenc9gbMKM-Rr-BvZlGDe-TDwYkcqkXD5KaZAMWnyr2kE6l28MCBtZ4MJC84o2SmpOfE0_lmYnhRcrrHvfyxd-Tv9z3CkSq21lITVQc6FdtnyHy-0/s16000/property+of+transpose+1..png)
2. The transpose of the sum
of two matrices is equal to the sum of their transposes, i.e. (A + B)t
= At + Bt.
![Properties of transpose - 2. (A + B)' = A' + B' Let A = (■(2&8@-6&4)) and B = (■(1&3@4&6)). Then, At = (■(2&-6@8&4)) and Bt = (■(1&4@3&6)). Now, A + B = (■(2&8@-6&4)) + (■(1&3@4&6)) = (■(3&11@-2&10)). And, (A + B)t = (■(3&-2@11&10)) ………………………….(i) Again, At + Bt = (■(2&-6@8&4)) + (■(1&4@3&6)) = (■(3&-2@11&10)) …...(ii) From (i) and (ii), we get (A + B)t = At + Bt](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiSxISUHqMHTdClwKcCCitW6ddTZXAVK7SGUEF_NCPiSeMD8fopnoe1gI6KxdfQ2AeuF6-WNgpzEiSaOC25IH52qFlEEb9kvB9MSCAcyVGN_56Z7tp-gaOsTz6YPDAPwMA4jhzykJhJ1xfg/s16000/property+of+transpose+2..png)
3. If A is any matrix and k
is any number, then (kA)t = kAt.
![Properties of transpose - 3. (kA)' = kA' Let k = 2, A = (■(2&3&5@4&-4&8)). ∴ At = (■(2&4@3&-4@5&8)) Now, kA = 2(■(2&3&5@4&-4&8)) = (■(4&6&10@8&-8&16)) ∴ (kA)t = (■(4&8@6&-8@10&16)) ………………..………(i) Again, kAt = 2(■(2&4@3&-4@5&8)) = (■(4&8@6&-8@10&16)) ……...….(ii) From (i) and (ii), we get (kA)t = kAt](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEitKowlcGfCYfTqLpJT3-fjrNWsB83WvD_SSXvHa1KUGReuVmsqb0r8AFbX7O7-JSS3WXGA7-0hp7eyvCsprDpLGTf3Wilf5b07j_p8yaHb-h0lS0bYSSOySV36W8g1ZKqPUO_aj_8Q5ceD/s16000/property+of+transpose+3.png)
4. If A and B are two
matrices conformable for multiplication, then (AB)t = BtAt.
![Properties of transpose - 4. (AB)' = B'A' Let A = (■(1&0&-1@2&0&3)) and B = (■(1&0@3&1@0&2)). Then, At = (■(1&2@0&0@-1&3)) and Bt = (■(1&3&0@0&1&2)) Now, AB = (■(1&0&-1@2&0&3))(■(1&0@3&1@0&2)) = (■(1&-2@2&6)) And, (AB)t = (■(1&2@-2&6))………………………………..(i) Again, BtAt = (■(1&3&0@0&1&2))(■(1&2@0&0@-1&3)) = (■(1&2@-2&6))……..…(ii) From (i) and (ii), we get (AB)t = BtAt](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhEChNZ89DK5r2YMmnjdOqOecQxU8M5weoYBr1NBxZFyGSG9Jw44lhY_yGeV5QY3ocdGym-FSpDMgk5ZNmr2q7aWYJfmmYr7uO5QF4QW1WFs4wKb4fLcdlP-pxHRQFLhrucRZQZMBbxZw5N/s16000/property+of+transpose+4..png)
Worked Out Examples
![Example 1 Example 1: Let A = (■(1&2@-3&6@0&1)), B = (■(0&3@5&7@1&-4)) and k = 3. Compute At, Bt and verify: (At)t = A (A + B)t = At + Bt (kA)t = kAt Solution: Here, A = (■(1&2@-3&6@0&1)), B = (■(0&3@5&7@1&-4)) and k = 3. ∴ At = (■(1&-3&0@2&6&1)) and Bt = (■(0&5&1@3&7&-4)) Now, i) (At)t = (■(1&2@-3&6@0&1)) = A. Hence verified. ii) Here, A + B = (■(1&2@-3&6@0&1)) + (■(0&3@5&7@1&-4)) = (■(1&5@2&13@1&-3)) ∴ (A + B)t = (■(1&2&1@5&13&-3)) …………...(i) At + Bt = (■(1&-3&0@2&6&1)) + (■(0&5&1@3&7&-4)) = (■(1&2&1@5&13&-3)) ……………….(ii) From (i) and (ii), we get (A + B)t = At + Bt. Hence verified. iii) Here, kA = 3(■(1&2@-3&6@0&1)) = (■(3&6@-9&18@0&3)) ∴ (kA)t = (■(3&-9&0@6&18&3)) ……………..…..(i) And, kAt = 3(■(1&-3&0@2&6&1)) = (■(3&-9&0@6&18&3)) …..(ii) From (i) and (ii), we get (kA)t = kAt. Hence verified.](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjBzsF1M8SQH6qmx4qI1oc2LGuNnhmL1OrAR2ZcM2WgxcoTut7flVZoU3k4HUqAhl-f5wcOeCwpnf0mmL93QMs8EHx7imxinrE6eKGxLErIHeC_DVfcGKhqmOHjLi4FrUYArYN8yXUPMjqL/s16000/example+1.png)
![Example 2 Example 2: If A = (■(6&-5@9&10)) and B = (■(1&0@0&1)). Find At, Bt, (AB)t and BtAt. Solution: Here, A = (■(6&-5@9&10)) and B = (■(1&0@0&1)) ∴ At = (■(6&9@-5&10)) and Bt = (■(1&0@0&1)) AB = (■(6&-5@9&10))(■(1&0@0&1)) = (■(6&-5@9&10)) ∴ (AB)t = (■(6&9@-5&10)) And, BtAt = (■(1&0@0&1))(■(6&9@-5&10)) = (■(6&9@-5&10))](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg9k9Ij8xVyHBwIq_h8gyj13fvG-rSmwLTZpe8evb9sSYz2WJS7FMYA_JDZwhdLu8F7ArwTrQIgthpGdRT4HGUrsg9rO_Ncu9ULxeTlNCUveld2ht3mq0IfVclIxmXGdmO-AWBF60HNfqrH/s16000/example+2.png)
![Example 3 Example 3: Given that A = (■(x&5@3&y)) and B = (■(4&3@5&-2)). Find x and y if At = B. Solution: We have A = (■(x&5@3&y)) and B = (■(4&3@5&-2)) By question, At = B i.e. (■(x&3@5&y)) = (■(4&3@5&-2)) Equating the corresponding elements, we have x = 4 and y = -2](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj6WMB3BgGIHxYZod4m9s57RaT3UptbWWjbN0xJyvCaVS8M4KR2GYUmpTaQsAx2G61iJQ6qlMQvYY8zjnqDfNT1n7FN4KbiiC76VwfIblma0SXNmT9FBFl28maszVEkieyuv1kj2eqft8Q6/s16000/example+3.png)
Do you have any questions regarding the transpose of a matrix?
You can ask your questions or problems here, in the comment section below.
0 comments: